63,694 research outputs found

    Vibrational density of states of silicon nanoparticles

    Get PDF
    The vibrational density of states of silicon nanoparticles in the range from 2.3 to 10.3 nm is studied with the help of molecular-dynamics simulations. From these simulations the vibrational density of states and frequencies of bulk-like vibrational modes at high-symmetry points of the Brillouin-zone have been derived. The results show an increase of the density of states at low frequencies and a transfer of modes from the high-frequency end of the spectrum to the intermediate range. At the same time the peak of transverse optical modes is shifted to higher frequencies. These observations are in line with previous simulation studies of metallic nanoparticles and they provide an explanation for a previously observed discrepancy between experimental and theoretical data [C. Meier et al., Physica E, 32, 155 (2006)].Comment: 7 pages, 5 figure; accepted for publication in Phys. Rev.

    Ferromagnetism within the periodic Anderson model: A new approximation scheme

    Full text link
    We introduce a new approach to the periodic Anderson model (PAM) that allows a detailed investigation of the magnetic properties in the Kondo as well as the intermediate valence regime. Our method is based on an exact mapping of the PAM onto an effective medium strong-coupling Hubbard model. For the latter, the so-called spectral density approach (SDA) is rather well motivated since it is based on exact results in the strong coupling limit. Besides the T=0 phase diagram, magnetization curves and Curie temperatures are presented and discussed with help of temperature-dependent quasiparticle densities of state. In the intermediate valence regime, the hybridization gap plays a major role in determining the magnetic behaviour. Furthermore, our results indicate that ferromagnetism in this parameter regime is not induced by an effective spin-spin interaction between the localized levels mediated by conduction electrons as it is the case in the Kondo regime. The magnetic ordering is rather a single band effect within an effective f-band.Comment: 13 pages, 16 figures, Phys. Stat. Sol. in pres

    Low density approach to the Kondo-lattice model

    Full text link
    We propose a new approach to the (ferromagnetic) Kondo-lattice model in the low density region, where the model is thought to give a reasonable frame work for manganites with perovskite structure exhibiting the "colossal magnetoresistance" -effect. Results for the temperature- dependent quasiparticle density of states are presented. Typical features can be interpreted in terms of elementary spin-exchange processes between itinerant conduction electrons and localized moments. The approach is exact in the zero bandwidth limit for all temperatures and at T=0 for arbitrary bandwidths, fulfills exact high-energy expansions and reproduces correctly second order perturbation theory in the exchange coupling.Comment: 11 pages, 7 figures, accepted by PR

    Life prediction and constitutive models for engine hot section anisotropic materials program

    Get PDF
    This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed

    Notched fatigue of single crystal PWA 1480 at turbine attachment temperatures

    Get PDF
    The focus is on the lower temperature, uncoated and notched features of gas turbine blades. Constitutive and fatigue life prediction models applicable to these regions are being developed. Fatigue results are presented which were obtained thus far. Fatigue tests are being conducted on PWA 1480 single crystal material using smooth strain controlled specimens and three different notched specimens. Isothermal fatigue tests were conducted at 1200, 1400, and 1600 F. The bulk of the tests were conducted at 1200 F. The strain controlled tests were conducted at 0.4 percent per second strain rate and the notched tests were cycled at 1.0 cycle per second. A clear orientation dependence is observed in the smooth strain controlled fatigue results. The fatigue lifes of the thin, mild notched specimens agree fairly well with this smooth data when elastic stress range is used as a correlating parameter. Finite element analyses were used to calculate notch stresses. Fatigue testing will continue to further explore the trends observed thus far. Constitutive and life prediction models are being developed

    Life prediction and constitutive models for engine hot section

    Get PDF
    The purpose of this program is to develop life prediction models for coated anisotropic materials used in gas turbine airfoils. In the program, two single crystal alloys and two coatings are being tested. These include PWA 1480, Alloy 185, overlay coating (PWA 286), and aluminide coating (PWA 273). Constitutive models are also being developed for these materials to predict the time independent (plastic) and time dependent (creep) strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularly important for high temperature gas turbine applications and is basic to any life prediction system. Some of the accomplishments of the program are highlighted

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    AVIRIS data characteristics and their effects on spectral discrimination of rocks exposed in the Drum Mountains, Utah: Results of a preliminary study

    Get PDF
    Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over a geologically diverse field site and over a nearby calibration site were analyzed and interpreted in efforts to document radiometric and geometric characteristics of AVIRIS, quantify and correct for detrimental sensor phenomena, and evaluate the utility of AVIRIS data for discriminating rock types and identifying their constituent mineralogy. AVIRIS data acquired for these studies exhibit a variety of detrimental artifacts and have lower signal-to-noise ratios than expected in the longer wavelength bands. Artifacts are both inherent in the image data and introduced during ground processing, but most may be corrected by appropriate processing techniques. Poor signal-to-noise characteristics of this AVIRIS data set limited the usefulness of the data for lithologic discrimination and mineral identification. Various data calibration techniques, based on field-acquired spectral measurements, were applied to the AVIRIS data. Major absorption features of hydroxyl-bearing minerals were resolved in the spectra of the calibrated AVIRIS data, and the presence of hydroxyl-bearing minerals at the corresponding ground locations was confirmed by field data

    Life prediction and constitutive models for engine hot section anisotropic materials program

    Get PDF
    This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed
    corecore